新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > IGBT及其子器件的四種失效模式比較

IGBT及其子器件的四種失效模式比較

作者: 時間:2011-12-11 來源:網(wǎng)絡 收藏

由圖6可以看出:

(1) 緊隨關斷后,初始拖尾電流電平(lio)直至的延遲時間是由能量決定的,或者說由關斷后的溫度決定的。能量越大,拖尾電流電平也越高,的延遲時間則越短。例如,圖中給出的最大能量是Tsc=60us,這時,Tds趨向一個極小值。

(2) 當Tsc=33us時,屬于EEC狀態(tài),不發(fā)生延遲。

當Tsc=35us,Tds=25us,開始出現(xiàn)熱擊穿。

4.2管殼溫度的影響

管殼溫度對臨界能量EC的影響最大,管殼溫度升高,EC就下降,測量SGW15N60的結(jié)果是:

溫度:25℃125℃

EC:0.81J0.62J

4.3集電極電壓的影響

集電極電壓升高,EC就下降:

VC:250V540V

EC:2.12J1.95J

4.4穿通型(PI)

PT—的短路失效特性和NPT—類似,但是,臨界能理值EC比NPT—IGBT低。例如:在125℃,短路電壓Vsc=400V時:

600V PT—IGBT(IRGP20u):EC=0.37J

600V NPT—IGBT(SGW15N60):EC=0.62J

4.5結(jié)果

(1)每次短路周期耗散的能量E小于由被測電路電壓Vce、短路持續(xù)時間Tsc和管殼溫度決定的臨界能量Ec時,IGBT可以連續(xù)承受104次以上短路沖擊才失效。

(2)在可比的條件下,當E>EC時,一次短路就失效。

(3)NPT—IGBT比PT—IGBT能承受較大的能量沖擊。

5、靜電放電保護用高壓NPN管的硅熔融

在失效的硅表面,常常觀察到硅熔融,而導致硅熔融的原因卻不只一個。例如:器件短路和開關時的瞬間大電流,正向工作區(qū)域或熱工作區(qū)出現(xiàn)二次擊穿損傷等到。因此要對靜電敏感的器件和電路的輸入/輸出(I/O)端增設靜電放電(ESD)保護裝置。而ESD保護裝置的器件的硅熔融,也是使被保護的器件和電路失效的原因之一。在本文引言中曾提到汽車應用的器件,其中原因失效要退貨的數(shù)量中,有30%的失效與ESD有關。由于I/O端的規(guī)范不同,需要及時對器件和電路進行再設計。同時,為了減少試驗成本,提高可靠性,需要采用計算機輔助設計技術(TCAD)。


圖7是晶體管的正向擊穿特性,圖7中的VT·是器件的損傷點,其定義有以下三種設定:

(1) 器件的漏泄電流大于某一臨界值即定為器件失效。但它忽略了硅熔融和氧化層的擊穿;

(2) 器件出現(xiàn)強烈電壓崩潰的二次擊穿時定為器件失效,但有時器件達到大電流范圍也不出現(xiàn)二次擊穿。

(3) 當器件的載流子碰撞電離Gi等于肖克萊—里德—霍爾(Shockley—Read—Hall)復合率,同時,總電流隨電壓反向增加時定為器件失效。

為了驗證第(3)種假設,予測二次擊穿管點,用0.35um特征尺寸的功率集成電路工藝設計了ESD防護用的標準高壓NPN管,并將基極—發(fā)射極接地。

圖8是NPN管測量的和用(2)假定來模擬的I-V特性。由圖8可見,測量的損傷電流IT2=1.5A,而模擬值是1..8A,有較大誤差。圖9是用(3)假設外推的結(jié)果。其模擬值是1.52A,相當一致。




圖10是1A電流應力下,模擬顯示該器件有兩個熱點。一個在收集極觸點下,損傷電流IT2=1.52A;另一個熱點在發(fā)射極之下,用外推法算出的損傷電流遠大于2A。所以,首先出現(xiàn)導致失效的硅熔融點應在收集極。圖11是該器件失效照片。證明此結(jié)果。

本案例說明:(1)ESD防護器件的失效也是實際器件和電路失效的一種。(2)防護用的NPN管的損傷點可以用TCAD獲得。

電荷放大器相關文章:電荷放大器原理

上一頁 1 2 下一頁

評論


相關推薦

技術專區(qū)

關閉